组成桁架的杆件的轴线和所受外力都在同一平面上(图1)。平面桁架可视为在一个基本的三角形框上添加杆件构成的。每添加两个杆,须形成一个新节点才能使结构的几何形状保持不变。这种能保持几何坚固性的桁架叫作无余杆(或叫无冗杆)桁架。如果只添加杆件而不增加节点,就不能保持桁架的几何坚固性,这种桁架叫作有余杆(或叫有冗杆)桁架。
三角形桁架在沿跨度均匀分布的节点荷载下,上下弦杆的轴力在端点处,向跨中逐渐减少;腹杆的轴力则相反。三角形桁架由于弦杆内力差别较大,材料消耗不够合理,多用于瓦屋面的屋架中。
梯形桁架和三角形桁架相比,杆件受力情况有所改善,而且用于屋架中可以更容易满足某些工业厂房的工艺要求。如果梯形桁架的上、下弦平行就是平行弦桁架,杆件受力情况较梯形略差,但腹杆类型大为减少,多用于桥梁和栈桥中。
平面桁架一般按理想的铰接桁架进行计算,即假设荷载施加在桁架节点上(如果荷载施加在节间时,可按简支梁换算为节点荷载),并和桁架的全部杆件均在同一平面内,杆件的重心轴在一直线上,节点为可自由转动的铰接点。理想状态下的静定桁架,可以将杆件轴力作为未知量,按静力学的数解法或图解法求出已知荷载下杆件的轴向拉力或压力(见杆系结构的静力分析)。
工程用的桁架节点,一般是具有一定刚性的节点而不是理想的铰接节点,由于节点刚性的影响而出现的杆件弯曲应力和轴向应力称为次应力。计算次应力需考虑杆件轴向变形,可用超静定结构的方法或有限元法求解。
空间桁架由若干个平面桁架所组成,可将荷载分解成与桁架同一平面的分力按平面桁架进行计算,或按空间铰接杆系用有限元法计算。